LETTERS TO THE EDITOR

Simple Three-Component Synthesis of 4-Acyl-1-(2-aminoethyl)-5-aryl-3-hydroxy-2,5-dihydropyrrol-2(1*H*)-ones

V. L. Gein, N. N. Kasimova, and K. D. Potemkin

Perm State Pharmaceutical Academy, Perm, Russia

Received June 19, 2001

Ethylenediamine is known [1] to react with acylpyruvic acid esters, yielding 3-acylmethylenehexahydropiperazin-2-ones. We have found that short heating of ethylenediamine with methyl acylpyruvates in dioxane in the presence of an aromatic aldehyde yields 4-acyl-1-(2-aminoethyl)-5-aryl-3-hydroxy-2,5-dihydropyrrol-2(1*H*)-ones **Ia** and **Ib**. Presumably, in the initial stage ethylenediamine reacts with aromatic aldehyde to give a Schiff base which undergoes intermolecular cyclization with acylpyruvic acid ester.

 $R = CH_3$ (a), C_6H_5 (b).

Compounds **Ia** and **Ib** are colorless crystalline substances which are poorly soluble in dimethyl sulfoxide and dimethylformamide. Product Ia is soluble in hot water. The ¹H NMR spectra of **Ia** and **Ib** contain multiplets from methylene protons of the aliphatic residue at the nitrogen atom: δ 2.70–2.86 (C¹H_A), $2.80-2.90 \text{ (C}^2\text{H}_2\text{)}, 3.59-3.64 \text{ ppm (C}^1\text{H}_B\text{)}; \text{ the } 5\text{-H}$ proton gives a singlet at δ 5.04-5.27 ppm; aromatic protons appear as a multiplet at δ 7.15–7.75 ppm; and a broadened two-proton signal at δ 7.85–7.95 ppm belongs to the aliphatic amino group. In the IR spectra of Ia and Ib we observed absorption bands from the lactam carbonyl group (1680-1697 cm⁻¹), side-chain ketone carbonyl (1635–1650 cm⁻¹), enol hydroxy group (3020-3030 cm⁻¹), and amino group (3230-3240 cm⁻¹). The mass spectra of **Ia** and **Ib** contain the molecular and fragment ion peaks which are consistent with the proposed structures. Compounds Ia and **Ib** give an intense cherry clolor with an alcoholic solution of iron(III) chloride; this test, together with the above spectral data, confirms the enol structure of the products.

4-Acetyl-1-(2-aminoethyl)-3-hydroxy-5-phenyl-**2,5-dihydropyrrol-2(1H)-one** (Ia). To a solution of 0.01 mol of methyl acetylpyruvate and 0.01 mol of benzaldehyde in 10 ml of 1,4-dioxane, we added at room temperature 0.01 mol of ethylenediamine, and the mixture was kept for 3 h at that temperature. The precipitate was filtered off; 1.63 g (63%) of Ia was obtained, mp $>300^{\circ}$ C (from ethanol). IR spectrum, v, cm⁻¹: 1682 (CON), 1646 (CO), 3023 (OH), 3230 (NH₂). ¹H NMR spectrum (DMSO- d_6), δ , ppm: 2.11 s (3H, CH₃), 2.70 m (1H, 1-CH_A), 2.80 m and 2.90 m (2H, CH₂NH₂), 3.59 m (1H, 1-CH_B), 5.04 s (1H,5-H), 7.20 m (5H, H_{arom}), 7.95 m (2H, NH₂). Mass spectrum, m/z: 260 $[M]^+$, 218 $[M-CH_3CO]^+$, 184 $[M-C_6H_5]^+$, 77 $[C_6H_5]^+$, 43 $[CH_3CO]^+$. Found, %: C 65.10, 64.62; H 6.38, 6.42; N 10.70, 9.98. C₁₄H₁₆N₂O₃. Calculated, %: C 64.60; H 6.20; N 10.76.

1-(2-Aminoethyl)-4-benzoyl-3-hydroxy-5-phenyl-2,5-dihydropyrrol-2(1*H*)-one (Ib). To a solution of 0.01 mol of methyl benzoylpyruvate and 0.01 mol of benzaldehyde in 10 ml of 1,4-dioxane, we added at room temperature 0.01 mol of ethylenediamine, and

the mixture was kept for 3 h at that temperature. The precipitate was filtered off; 1.94 g (60%) of **Ib** was obtained, mp 241–243°C (from ethanol). IR spectrum, v, cm⁻¹: 1697 (CON), 1635 (CO), 3029 (OH), 3236 (NH₂). ¹H NMR spectrum (DMSO- d_6), δ , ppm: 2.83 m (2H, NH₂CH₂), 2.86 m (1H, 1-CH_A), 3.64 m (1H, 1-CH_B), 5.27 s (1H, 5-H), 7.25 m (8H, H_{arom}), 7.74 d (2H, H_{arom}), 7.85 m (2H, NH₂). Mass spectrum, m/z: 322 $[M]^+$, 208 $[C_6H_5CH=CHCOC_6H_5]^+$, 105 $[C_6H_5CO]^+$, 77 $[C_6H_5]^+$. Found, %: C 70.65, 70.71; H 5.60, 5.64; N 8.68, 8.71. $C_{19}H_{18}N_2O_3$. Calculated, %: C 70.79; H 5.63; N 8.69.

The IR spectra were recorded on a UR-20 spectrometer in mineral oil, the ¹H NMR spectra were measured on a Bruker DRX-500 instrument at 500.13 MHz, and the mass spectra (electron impact, 70 eV) were run on an MKh-1320 mass spectrometer.

REFERENCES

Milyutin, A.V., Safonova, N.V., Goleneva, A.F., Andreichikov, Yu.S., Tul'bovich, G.A., and Makhmudov, R.R., *Khim.-Farm. Zh.*, 1994, vol. 28, no. 12, p. 37.